Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.03.27.24304888

ABSTRACT

To ensure there is adequate investment into diagnostics, an understanding of the magnitude of impact and return on investment is necessary. We therefore sought to understand the health and economic impacts of the molecular diagnostic programme in South Africa, to deepen the under-standing on the broad value of diagnostics and guide future healthcare investments. We calcu-lated the 10-year (where data were available) total cost and DALYs averted associated with molecular diagnosis of molecular TB testing (2013-2022), HIV viral load monitoring (2013-2022), early infant diagnosis of HIV infection (2013-2022), and SARS-CoV-2 testing (2020-2022). We then calculated the economic value associated with those health gains and subsequent return on investment. Since the inception of the molecular diagnostics programme in South Africa, 3,035,782 DALYs have been averted as a direct consequence of this pro-gramme. This has generated an estimated $20.5 billion in economic value due to these health gains. The return on investment varied by specific diagnostic test (19.0 for tuberculosis, 1.4 for HIV viral load testing, 64.8 for early infant diagnosis of HIV, and 2.5 for SARS-CoV-2), for an average of 9.9 for the entire molecular diagnostics programme between 2013 and 2022- or $9.9 of value for each $1 invested. The molecular diagnostics programme in South Africa gen-erated a significant amount of health gains and economic value associated with these health gains, and the return-on-investment rivals other high-impact public health interventions such as childhood vaccination. Consequently, the molecular diagnostics programme in South Africa is highly impactful, and will continue to be an excellent investment of South African public health expenditure.


Subject(s)
HIV Infections , Severe Acute Respiratory Syndrome , Tuberculosis
2.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202306.0384.v1

ABSTRACT

The high demand for SARS-CoV-2 tests but limited supply to South African laboratories early in the COVID19 pandemic, resulted in a heterogenous diagnostic footprint of open and closed molecular testing platforms. Novel approaches were required to monitor test quality especially during the introduction of newly circulating variants. The National Health Laboratory Service centrally collected cycle threshold (Ct) values from 1,497,669 test results reported from six commonly used PCR assays in 36 months, and visually monitored changes in their median Ct within a 28-day centered moving average for each assays’ gene targets. This continuous quality monitoring rapidly identified delayed hybridization of RdRp in the Allplex™ SARS-CoV-2 assay due to the Delta (B.1.617.2) variant; S-gene target failure in the TaqPath™ COVID-19 assay due to B.1.1.7 (Alpha) and the B.1.1.529 (Omicron); and recently E-gene delayed hybridization in the Xpert® Xpress SARS-CoV-2 due to XBB.1.5. This near “real-time” monitoring helped inform the need for sequencing and the importance of multiplex molecular nucleic acid amplification technology designs used in diagnostics for patient care. This continuous quality monitoring approach at the granularity of Ct values should be included in ongoing surveillance and with application to other disease use cases that rely on molecular diagnostics.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202212.0073.v1

ABSTRACT

The Xpert® Xpress SARS-CoV-2 and Xpert® Xpress SARS-CoV-2/Flu/RSV tests were rapidly developed and widely used during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. In response to emerging genetic variability, a new SARS-CoV-2 target (RNA-dependent RNA-polymerase) has been added to both tests: Xpert® Xpress CoV-2 plus and Xpert® Xpress CoV-2/Flu/RSV plus test. A rapid evaluation of both tests was performed in South Africa, using residual respiratory specimens. Residual respiratory specimens (n=125) were used to evaluate the Xpert® Xpress CoV-2 plus test and included 50 genotyped specimens. The Xpert® Xpress CoV-2/Flu/RSV plus test was assessed using 45 genotyped SARS-CoV-2 specimens, ten influenza A, ten Influenza B and twenty respiratory syncytial virus specimens. Results were com-pared to in-country standard of care tests. Genotyped specimens tested the performance of the test under pressure from circulating SARS-CoV-2 variants of concern. Reference material was included to assess the test limits and linearity. The Xpert® Xpress CoV-2 plus test performance compared to reference results across residual respiratory specimens was good (positive per-centage agreement (PPA)=95.2%, negative percentage agreement (NPA)=95.0%) The Xpert® Xpress CoV-2/Flu/RSV plus test showed good performance across all residual respiratory specimens (PPA=100%, NPA=98.3%). All genotyped variants of concern were detected by both tests. The Xpert® Xpress CoV-2 plus and Xpert® Xpress CoV-2/Flu/RSV plus tests can be used to diagnose SARS-CoV-2, and to diagnose and differentiate SARS-CoV-2, influenza A, influenza B and respiratory syncytial virus respectively. The NPA was lower than the recommended 99%, but was influenced by the low number of negative specimens tested. The variants of concern assessed did not affect test performance. It is recommended that sites perform their own assessments compared to in-country standard of care tests.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL